Model selection for support vector machines via uniform design
نویسندگان
چکیده
منابع مشابه
Model selection for support vector machines via uniform design
The problem of choosing a good parameter setting for a better generalization performance in a learning task is the so-called model selection. A nested uniform design (UD) methodology is proposed for efficient, robust and automatic model selection for support vector machines (SVMs). The proposed method is applied to select the candidate set of parameter combinations and carry out a k-fold cross-...
متن کاملBilevel Model Selection for Support Vector Machines
The successful application of Support Vector Machines (SVMs), kernel methods and other statistical machine learning methods requires selection of model parameters based on estimates of the generalization error. This paper presents a novel approach to systematic model selection through bilevel optimization. We show how modelling tasks for widely used machine learning methods can be formulated as...
متن کاملModel Selection for Support Vector Machines
New functionals for parameter (model) selection of Support Vector Machines are introduced based on the concepts of the span of support vectors and rescaling of the feature space. It is shown that using these functionals, one can both predict the best choice of parameters of the model and the relative quality of performance for any value of parameter.
متن کاملVariable Selection for Support Vector Machines via Smoothing Spline Anova
It is well-known that the support vector machine paradigm is equivalent to solving a regularization problem in a reproducing kernel Hilbert space. The squared norm penalty in the standard support vector machine controls the smoothness of the classification function. We propose, under the framework of smoothing spline ANOVA models, a new type of regularization to conduct simultaneous classificat...
متن کاملClustering Model Selection for Reduced Support Vector Machines
The reduced support vector machine was proposed for the practical objective that overcomes the computational difficulties as well as reduces the model complexity by generating a nonlinear separating surface for a massive dataset. It has been successfully applied to other kernel-based learning algorithms. Also, there are experimental studies on RSVM that showed the efficiency of RSVM. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2007
ISSN: 0167-9473
DOI: 10.1016/j.csda.2007.02.013